VLBI and γ-ray studies of TANAMI radio galaxies

Roberto Angioni, MPIfR Bonn
EVN symposium, 20-23 September 2016
St. Petersburg, Russia
Collaborators

Eduardo Ros – MPIfR Bonn, Uni. Valencia
Matthias Kadler – Uni. Würzburg
Roopesh Ojha – NASA Goddard Space Flight Center
Cornelia Müller – Radboud Uni. Nijmegen
Felicia Krauss – GRAPPA & API, Uni. Amsterdam
Anton Zensus – MPIfR Bonn

TANAMI collaboration

Fermi-LAT collaboration (graduate member)
Outline

• TANAMI program and science
 • VLBI monitoring
 • The highest-resolution view of the closest AGN: Centaurus A
• VLBI sample study of TANAMI radio galaxies: Pictor A
 • Dual frequency imaging
 • Spectral index mapping
 • Kinematics
• γ-ray studies of radio galaxies
The TANAMI program

Tracking Active Nuclei with Austral Milliarcsecond Interferometry

- ~90 jets at $\theta < -30^\circ$ declination at mas resolution since 2007
- Array: LBA + New Zealand, South Africa, Antarctica, Chile
- Dual frequency 8.4 GHz and 22.3 GHz, 3-4 epochs/yr
The TANAMI program

First-epoch images
Ojha et al. 2010
The TANAMI program

New sources Müller et al. in prep.
The TANAMI program

Centaurus A
Highest-resolution view of the closest AGN jet
Müller et al. 2011, 14

Comp. speeds 0.1 c to 0.3c, downstream acceleration

Intrinsic jet parameters
\[\theta \sim 12^\circ - 45^\circ \]
\[\beta \sim 0.24 - 0.37 \]

‘Tuning fork’ \sim 0.4 pc from core revealed by stacked images, most likely jet-start interaction
TANAMI radio galaxies

<table>
<thead>
<tr>
<th>B1950 IAU</th>
<th>Alt. name</th>
<th>RA</th>
<th>Dec</th>
<th>Class</th>
<th>z</th>
<th>γ-ray det.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0518-458</td>
<td>Pictor A</td>
<td>79.96</td>
<td>-45.78</td>
<td>FR II</td>
<td>0.035</td>
<td>Y</td>
</tr>
<tr>
<td>0521-365</td>
<td>PKS 0521-36</td>
<td>80.74</td>
<td>-36.46</td>
<td>RG/SSRQ</td>
<td>0.057</td>
<td>Y</td>
</tr>
<tr>
<td>0625-354</td>
<td>PKS 0625-35</td>
<td>96.78</td>
<td>-35.49</td>
<td>FRI/BLL</td>
<td>0.055</td>
<td>Y</td>
</tr>
<tr>
<td>1258-321</td>
<td>PKS 1258-321</td>
<td>195.25</td>
<td>-32.44</td>
<td>FR I</td>
<td>0.017</td>
<td>N</td>
</tr>
<tr>
<td>1333-337</td>
<td>IC 4296</td>
<td>204.16</td>
<td>-33.97</td>
<td>FR I</td>
<td>0.013</td>
<td>N</td>
</tr>
<tr>
<td>1343-601</td>
<td>Centaurus B</td>
<td>206.70</td>
<td>-60.41</td>
<td>FR I</td>
<td>0.013</td>
<td>Y</td>
</tr>
<tr>
<td>1549-790</td>
<td>PKS 1549-79</td>
<td>239.25</td>
<td>-79.23</td>
<td>RG/CSO</td>
<td>0.15</td>
<td>N</td>
</tr>
<tr>
<td>1718-649</td>
<td>NGC 6328</td>
<td>260.92</td>
<td>-65.01</td>
<td>GPS/CSO</td>
<td>0.014</td>
<td>Y</td>
</tr>
<tr>
<td>1733-565</td>
<td>PKS 1733-56</td>
<td>264.40</td>
<td>-56.57</td>
<td>FR II</td>
<td>0.099</td>
<td>N</td>
</tr>
<tr>
<td>1814-637</td>
<td>PKS 1814-63</td>
<td>274.90</td>
<td>-63.76</td>
<td>CSS/CSO</td>
<td>0.065</td>
<td>N</td>
</tr>
<tr>
<td>1934-638</td>
<td>PKS 1934-63</td>
<td>294.85</td>
<td>-63.71</td>
<td>GPS</td>
<td>0.18</td>
<td>N</td>
</tr>
<tr>
<td>2027-308</td>
<td>PKS 2027-308</td>
<td>307.41</td>
<td>-30.66</td>
<td>RG</td>
<td>0.54</td>
<td>N</td>
</tr>
<tr>
<td>2152-699</td>
<td>PKS 2153-69</td>
<td>329.28</td>
<td>-69.69</td>
<td>FR II</td>
<td>0.028</td>
<td>N</td>
</tr>
</tbody>
</table>
VLBI dual frequency imaging

VLBI imaging of southern hemisphere radio galaxies (FR I, FR II, compact objects) at 3.6 cm and 1.3 cm

13 sources in total

Perley+ 1997, VLA 1.4 GHz

Angioni+ in prep., TANAMI 8.4 GHz
Spectral index mapping

No previous study on spectral morphology on VLBI scales

Pictor A

Pictor A

8.4 GHz

22 GHz

Preliminary map indicates inverted core
Jet kinematics

Previous VLBI study (Tingay et al. 2000)
- 2 epochs at 8.4 GHz (SHEVE 1993 + VLBA 1999)
- Jet bend at ~5 mas from core
- Subluminal motion of inner components $\beta \lesssim 1$

Preliminary TANAMI features
- 5 epochs at 8.4 GHz
- Jet bend looks persistent
- App. speed for innermost moving component $\beta = 1.8 \pm 0.4$

Angioni+ in prep.
TANAMI radio galaxies

Current progress on sample study:
- Imaging completed for 10/13 sources, ~80 maps in total
- 16 spix maps
- 3 preliminary kinematic analyses
Radio galaxies with *Fermi*-LAT

- Alternative high-energy view of relativistic jets (w.r.t. blazars)
 - Smaller bias from strong Doppler effects
 - Test for unified models, emission models, acceleration models
 - Simultaneous obs. of accretion and jet → origin of radio-loudness

- GeV γ-rays from RG lobes
 - Energetic particles far from central engine
 - Core/lobes and impact on variability

γ-ray RGs provide crucial information, but we have only few sources...new detections with Pass8 analysis?
Multi-wavelength and *Fermi*-LAT

- Pass8 *Fermi*-LAT data analysis for RGs and γ-ray undetected quasars: new detections or better ULs
- SEDs: why are these sources not detected by the LAT?
Thank you for your attention!
There is a strong connection between radio and γ-ray emission in radio-loud AGN...

Correlations (Arshakian+ 2012)

Variability behavior (e.g. Fuhrmann+ 2014, Casadio+ 2015, Rani+ 2014, 2015, Karamanavis+ 2015, 2016)

...but there are bright radio-loud sources without a γ-ray detection (Lister+ 2015)

Lower SED peak? Doppler factor?
Multi-wavelength and *Fermi*-LAT

- Analysis of Pass8 LAT data for γ-ray-faint TANAMI sources (radio galaxies and quasars)
γ-ray-faint sample

<table>
<thead>
<tr>
<th>Source</th>
<th>RA(J2000)</th>
<th>Dec(J2000)</th>
<th>Redshift</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKS 0438-43</td>
<td>70.07167</td>
<td>-43.5525</td>
<td>2.863</td>
<td>Q</td>
</tr>
<tr>
<td>PMN J0529-3555</td>
<td>82.406958</td>
<td>-35.921222</td>
<td>*</td>
<td>U</td>
</tr>
<tr>
<td>PKS 1257-326</td>
<td>195.17678</td>
<td>-32.886697</td>
<td>1.256</td>
<td>Q</td>
</tr>
<tr>
<td>PKS 1258-321</td>
<td>195.25334</td>
<td>-32.441456</td>
<td>0.017042</td>
<td>G</td>
</tr>
<tr>
<td>IC 4296</td>
<td>204.1625</td>
<td>-33.96583</td>
<td>0.012465</td>
<td>G</td>
</tr>
<tr>
<td>PKS 1549-79</td>
<td>239.24542</td>
<td>-79.23444</td>
<td>0.1501</td>
<td>G</td>
</tr>
<tr>
<td>PKS 1716-771</td>
<td>260.96042</td>
<td>-77.23056</td>
<td>*</td>
<td>U</td>
</tr>
<tr>
<td>PKS 1733-56</td>
<td>264.39917</td>
<td>-56.5675</td>
<td>0.098</td>
<td>G</td>
</tr>
<tr>
<td>PKS 1814-63</td>
<td>274.89583</td>
<td>-63.76333</td>
<td>0.0627</td>
<td>G</td>
</tr>
<tr>
<td>PKS 1915-458</td>
<td>289.81950</td>
<td>-45.727389</td>
<td>2.47</td>
<td>Q</td>
</tr>
<tr>
<td>PKS 1934-63</td>
<td>294.85428</td>
<td>-63.71267</td>
<td>0.539</td>
<td>G</td>
</tr>
<tr>
<td>PKS 2027-308</td>
<td>307.74125</td>
<td>-30.65667</td>
<td>0.539</td>
<td>G</td>
</tr>
<tr>
<td>PKS 2106-413</td>
<td>317.38833</td>
<td>-41.1725</td>
<td>1.058</td>
<td>Q</td>
</tr>
<tr>
<td>PKS 2153-69</td>
<td>329.275</td>
<td>-69.69</td>
<td>0.028273</td>
<td>G</td>
</tr>
</tbody>
</table>
Multi-wavelength and *Fermi*-LAT

- Analysis of Pass8 LAT data for γ-ray-faint TANAMI sources (radio galaxies and quasars)
 - No detections yet, but significantly improved upper limits w.r.t. previously published work (TANAMI paper on 1st year of LAT data, Böck et al. 2016)

<table>
<thead>
<tr>
<th>B1950 IAU name</th>
<th>P7 UL (erg cm^-2 s^-1)</th>
<th>P8 UL (erg cm^-2 s^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0438-436</td>
<td>7.92e-12</td>
<td>2.34e-12</td>
</tr>
<tr>
<td>1257-326</td>
<td>1.55e-11</td>
<td>2.15e-12</td>
</tr>
<tr>
<td>1258-321</td>
<td>1.73e-11</td>
<td>3.43e-12</td>
</tr>
<tr>
<td>1333-337</td>
<td>6.48e-12</td>
<td>1.88e-13</td>
</tr>
<tr>
<td>1549-790</td>
<td>1.59e-11</td>
<td>1.54e-12</td>
</tr>
<tr>
<td>2106-413</td>
<td>4.32e-12</td>
<td>1.55e-12</td>
</tr>
<tr>
<td>2152-699</td>
<td>1.23e-11</td>
<td>1.61e-12</td>
</tr>
</tbody>
</table>
Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

M. Kadler1*, F. Krauß1,2, K. Mannheim1, R. Ojha3,4,5, C. Müller1,6, R. Schulz1,2, G. Anton7, W. Baumgartner3, T. Beuchert1,2, S. Buson8,9, B. Carpenter5, T. Eberl7, P. G. Edwards10, D. Eisenacher Glawion1, D. Elsässer1, N. Gehrels3, C. Gräfe1,2, S. Gulyaev11, H. Hase12, S. Horiuchi13, C. W. James7, A. Kappes1, A. Kappes7, U. Katz7, A. Kreikenbohm1,2, M. Kreter1,7, I. Kreykenbohm2, M. Langejahn1,2, K. Leiter1,2, E. Litzinger1,2, F. Longo14,15, J. E. J. Lovell16, J. McEnery3, T. Natusch11, C. Phillips10, C. Plötz12, J. Quick17, E. Ros18,19,20, F. W. Stecker3,21, T. Steinbring1,2, J. Stevens10, D. J. Thompson3, J. Trüstedt1,2, A. K. Tzioumis10, S. Weston11, J. Wilms2 and J. A. Zensus18
Long γ-ray outburst from blazar PKS B1424-418 coincident with highest energy IceCube neutrino event

TANAMI sees strongest outburst ever from VLBI core, starting before γ-ray flare (1.5 to 6 Jy)

Chance coincidence probability estimated in $\sim5\%$
TANAMI highlights: time resolved

Krauss et al. 2016
Dynamic SED catalog: 81 SEDs for 22 brightest TANAMI γ-ray blazars
TANAMI highlights: multi-wavelength

Identification of the peculiar γ-ray source PMN J1603-4904 with a MPS radio galaxy